
THE MINIX ASSEMBLY LANGUAGE MANUAL 
 

Author  Mao yao，Yang songhua 
Translated and edited by: Wangzhi  e-mail: quakewang@mail.whut.edu.cn 

  
   Minix Assembly language is a little different to the Masm, which Most of us have learned. But 
In Minix OS There is many pieces of assembly code, which is very necessary to understand 
everything. I have found a Chinese paper talk about it (Posted on the Journal of Southwest 
University for Nationalities-Natural Science Edition Vol 29,5, Authors are Mao yao and Yang 
songhua). It is very good and useful. So here I translated and edited it to share them with all the 
people. I must mention that the author of this paper thanks Kees J. Bot two times. 

I added some examples to explain the things clearer (All examples in this document are 
written by myself), correct several errors, and I change the format of original paper greatly to 
make it more like a manual. This document will explain almost all aspects of Minix assembly 
language, they are compiling, structures, syntax, and interchange between assembly and C code. 
At last I will give two examples using some features of Minix assembly language (All the 
examples are run able and tested under minix2.0.0). 

 
1 COMPILING 

In Minix you can use cc compiler to compile the assembly language code. Because cc must 
start from a function named “main”, if all of your code is written in assembly language, you must 
have a function named “_main” to indicate main entry point.  

If you save the file as “a.s”, then use "cc a.s" command to generate the executable file “a.out”, 
and you can type "./a.out" the run it. If you want to just compile the assembly language file, use 
"cc -c a.s" then you will get an object file “a.o”.  

A very useful parameter of cc compiler is "-S". If you have a c file “b.c”, using "cc -S b.c" 
you will get assembly language file b.s. In another word the c language file “b.c” is converted into 
assembly language file “b.s”. Using this method you can study all Minix assembly language 
features. 

 
2 STRUCTURES 

A Minix assembly language file includes four sections. They are: 
1. Code section (.sect .text): executable code is put here. 
2. Read only data section (.sect .rom): read only data is put here. The data in rom section 

can be changed (write) if the physical medium allows it. In other word the rom section is 
just suggest these data can be saved in (read only memory) but not forbid the code to be 
changed (written). And almost all the time the data defined in rom section is just saved 
on RAM and can be changed.  

3. Data section (.sect .data): read and write able data is put here.  
4. Global data section (.sect .bss): global data is put here. The data define in this section 

will be initialed to zero. If you put a nonzero data in this section the compiler will give 
you a error.   

Every section is declared by ".sect" following a section name(“.sect .data” declare a section 



and the name of this section is “.data”) . The function of each section is indicated by the order of 
their defined orders in the file (not the name of the section). The first section which compiler 
meet is the (code section), the second is read only data section, the third is data section, the fourth 
is global data section. You can give any name to a section (but conform name rule, for example 
(.sect Wangzhi). All the things of one section may not be all put in one place, the compiler will 
know them belong to one section according to the section name before them. In Minix these is not 
stack section, the compiler will allot stack space (you can use “chmem” command to change it 
later).  

For a good program habit, you shall declare the four sections at the file beginning of every 
assembly language file, and give a standard name to four sections like these (the standard name of 
section is started by a "."): 
 .sect .text  ! For code 
 .sect .rom  ! For read only data 
 .sect .data  ! For read and write able data 
 .sect .bss   ! For global data 
 
3 SYNTAX 
3.1 name rule 
 You can use period"." underline"_" Alphabetic letters (a--z and A--Z) and digits (0--9). You 
cannot put digit at the beginning of a name, but you can use a digit as an identifier. 
3.2 Character string 
 Using single quotation mark (') or double quotation mark (") to embody the string. like these: 
 "I like Minix!" 
 'Happy Chinese NEW YEAR!' 
3.3 parentheses and square brackets 
 Using parentheses"()" to indicate this operand is a address. Using square brackets"[]" to change 
the priority. 
3.4 comments   
 Using exclamatory mark (!), from the “!” to the end of this line is the comment. 
3.5 prefix and postfix 
(1) 16/32 operand prefix 
 Using "o16" and "o32" to indicate the operand is 16/32 bits. 
(2) 16/32 address prefix 
 Using "a16" and "a32" to indicate the address is 16/32 bits.  
(3) Instruction repeat prefix 
 "rep" indicate repeat the instruction when cx register is not zero.  

repz/repnz/repe/repne indicate repeat the instruction when cx register is not zero and at the same 
time the result is zero/not zero/equal/not equal. 
(4) Segment prefix 
 Using cseg/dseg/eseg/fseg/gseg/sseg to indicate addressing in cs/ds/es/fs/gs/ss segment register. 
(5) Far jump postfix 
 Using instruction "jmpf" and "callf" to indicate far jump and far call. In 32 bits OS you should 
using these instructions like this: 
 jmpf SEGMENT:OFFSET 



 callf SEGMENT:OFFSET 
(The "SEGMENT" can not be a variable, it is must be a constant.)  
(6) 8 bits registers postfix 
 If you use 8 bits registers you must add a postfix "b" to the instruction. Like: 
 movb (edi), ah 
3.6 Identifier 
 The declaration of a Identifier is: 

Minix: 
Wangzhi:   

3.7 Operand 
(1) Registers 
 8 bits register (al, ah...), 16 bits register (ax , ...), 32 bits register(eax , ...), flag register (flags), 
segment register(cs , ds , ...), ... 
(2) Expression Like: 
 6*[3+2]-2  !result=28 
(3) (register)        
 The value of register is the operand's address, and instruction will get the operand from that 
address. (Only esp and ebp's default addressing segment are ss register, all the others are ds 
register.) 
(4) (expression) 
 The value of expression is the operand's address, and instruction will get the operand from that 
address. 
(5) expression (register) 
 The sum of expression and register is the operand's address, and instruction will get the operand 
from that address. 
(6) expression (register*SCALE) 
 The sum of expression and register*SCALE is the operand's address, and instruction will get the 
operand from that address. The SCALE must be one of 2, 4 or 8. 
(7) expression (register1)(register2) 
 The sum of expression and register1 and register2 is the operand's address, and instruction will 
get the operand from that address. The register1 is the base register, the default segment of this 
operand is the default segment of the register1. 
(8) expression (register1)(register2*SCALE) 
 The sum of expression and register1 and register2*SCALE is the operand's address, and 
instruction will get the operand from that address. The register1 is the base register, the default 
segment of this operand is the default segment of the register1. 
3.8 Instruction 
 Any instruction printed in Intel 80x86 assembly language manual can be used. Using comma"," 
to separate two operands. If you write two statements on one line, you must use semicolon”;” to 
separate them. If a statement is too long to be written in one line, Using backlash”\” to indicate the 
next line is follow this line and do not begin a new line. 
3.9  
(1)  .extern 
 Declare a global variable or function defined in other files and can use them in this file. 



(2)  .define 
 Declare a global variable or function defined in this files and can be referenced by other files. 
(3)  .data    .data2    .data4 
 .data   
  Define a one-byte data.  
 .data2   
  Define a two-byte data.  
 .data4   
  Define a four-byte data.  
(4)  .ascii     .asciz 
 .ascii  define a character string. 
 .asciz  define a character string, and add a 0 at the end of this string. 
(5)  .align NUM 
 Make the compiler put the things on the integral multiple address. 
(6)  .space NUM  
 Define a memory space which initialized contain NUM bytes zero. 
(7)  .comm VAR NUM 
 Define a variable VAR and initialized it to NUM bytes zero. 
(8) .sect XXXX 
 Define a section, named “XXXX”. 
3.10 Macro 
 It is used as the same as the macro used in ANSI C language. 
  
4. Interchange between assembly and C code 
4.1 call ANSI C function from assembly language code 

First The C function must be declared by .extern. If that C function has parameters, you must 
push the parameters on the stack before call the function. After you return from the function the 
eax register contain the return value of the C function and you must resume the stack to continue. 
And you must add an underline (_) at the beginning of the C function name when you call it. Like: 
 (in C code file:) 
 extern int c_function(int a, int b, int c); 
 (in assembly code) 
 push c 
 push b 
 push a 
 call _c_function 
 add  esp,3*4  
     
4.2 call assembly language function from ANSI C code 

First you must declare this assembly language function to make it can be used outside its file. 
Then you must add an underline at the beginning of the assembly language function, which want 
to be used outside, remove this underline when you call it from the C language code. Like: 
 (in assembly code) 
 .define _s_function 



 _s_function: 
  !get the parameters 
 (in C code file:) 
 s_function(a,b,c) 
 
5. EXAMPLES 
5.1 example one 
 
! Begin of example1 assembly code 
.sect .text; .sect .rom; .sect .data; .sect .bss 
.define _main 
.sect .text 
_main: 

mov eax,msg !get and pass the parameter to the C function 
  push  eax 
  call _printf !call C function add a _ 
  add esp,4 !resume the stack 
 

xor eax,eax !pass parameter to exit function 
  push eax 
  call  _exit 
.sect .data 
msg: .ascii "Be happy in Minix!!\n" 
! End of example1 assembly code 
  
5.2 example two 
  
! Begin of example2 assembly language code 
.sect .text; .sect .rom; .sect .data; .sect .bss 
.define _s_f !the function and variables in this file 
.defiane _D4 
.define _D5 
.define _D6 
.extern _c_pchar !the function outside will be used 
.extern _c_pint 
 
.sect .text 
_s_f: 
 !get the C functions parameters, it is not a good method  
 !why put the parameters in data section, why not just put 
 !it in registers? Because when you call C functions 
 ! Registers will be used and your data will lose. 
 mov edx,esp  
 add esp,4 



 pop eax 
 mov (D1),eax !push data to the address of D1 
 pop eax 
 mov (D2),eax 
 pop eax 
 mov (D3),eax 
  
 !resume the stack 
 mov esp,edx 
 
 push (D1) 
 call _c_pchar 
 add esp,4 
 
 push (D2) 
 call _c_pint 
 add esp,4 
 
 push (D3) 
 call _printf 
 add esp,4 
  
 ! Use the variable assigned in C code 
 push (_D4) 
 call _c_pchar 
 add esp,4 
 
 push (_D5) 
 call _c_pint 
 add esp,4 
 
 push (_D6) 
 call _printf 
 add esp,4 
 
 ret 
 
.sect .data 
D1: .data4 0 !define D1 and alloce it 4 bytes 
D2: .data4 0 
D3: .data4 0 
_D4: .data4 0 !must add underline 
_D5: .data4 0 
_D6: .data4 0 



! End of example2 assembly code 
 
/* Begin of the example2 C code */ 
#include <stdio.h> 
 
extern int s_f(char p1, int p2, void *p3); 
extern int c_pchar(char c); 
extern int c_pint(int d); 
extern char D4;  /* tell the C compiler what these data are */ 
extern int D5; 
extern void *D6; /* MUST use void*, otherwise will get error at runtime */ 
 
int main (void) 
{ 
 char p1= 'A'; 
 int p2=44; 
 void *p3 = (void *)"Be happy in Minix!\n"; 
 
/* you see, I assign the variable define in assembly code */ 
 D4 = 'B'; 
 D5 = 77; 
 D6 = (void *)"Happy Chinese NEW YEAR!\n";  
  
 s_f(p1,p2,p3); 
 
return 0; 
} 
 
int c_pchar(char c) 
{ 
 printf("%c\n", c); 
 return 0; 
} 
 
int c_pint(int d) 
{ 
 printf("%d\n", d); 
 return 0; 
} 
/* End of the example2 C code */ 
 
 

-----------------End of Manual----------------- 



 
 
  
 
 

Wangzhi 
PostGraduate Of Wuhan University of 

Technology (China) 
 

Research direction: Operating System And  
Network 

 
E-mail: quakewang@mail.whut.edu.cn

2004.5.19 

mailto:quakewang@mail.whut.edu.cn

	THE MINIX ASSEMBLY LANGUAGE MANUAL
	PostGraduate Of Wuhan University of Technology (China)
	Research direction: Operating System And


